MPI Summary for Python with mpidpy

The mpidpy package contains several subpackages, the most important of which is MPI. For full details
see

https://mpi4py.readthedocs.io/en/stable

for details. We will discuss only the MPI subpackage in this Guide.

The MPI subpackage in turn contains a set of top-level parameters and methods, plus a number of
classes. The only class we will discuss in this Guide is the Comm (communicator) class.

A short tutorial is at

https://mpi4py.readthedocs.io/en/stable/tutorial.html

Importing

Begin by importing the subpackage. Usually we omit the mpidpy prefix.
from mpidpy import MPI

The MPI constants are top-level attributes in this package. Among the most widely used are
MPI.COMM WORLD

MPI.PROC NULL

MPI.ANY TAG

MPI.ANY SOURCE

Predefined MPI types are also attributes of the MPI package.
MPT.DOUBLE

MPI.FLOAT

MPT.INT

MPTI .BOOL

MPI.COMPLEX
Note that these correspond to NumPy types. There are many more; see the API reference for a list.
Usage

The mpidpy package can be used with arbitrary (mutable) Python objects. In this case the MPI routines
are invoked with all Jower-case letters and the object is pickled and unpickled automatically. However,


https://mpi4py.readthedocs.io/en/stable
https://mpi4py.readthedocs.io/en/stable/tutorial.html

the simplest and fastest way to use mpidpy is to use NumPy arrays, even if the array has only one
element. In this case the initial letter of the method is capitalized. This Guide will focus on use with
NumPy arrays. See the tutorial for more examples. All examples below will assume

import numpy as np
It is generally a good idea to create your arrays with an explicit dtype argument.
The Essential Procedures

MPI.Init ()

This can be automatically invoked when a Comm object is created, so is less necessary than for compiled
languages.

Finalization is automatic upon exit from the interpreter.
Comm methods

Most of mpidpy can be used through a Comm object.
Instantiating

comm=MPTI.COMM WORLD

Rank. Note that ranks are relative to a communicator.
comm.Get rank()

myrank=MPI.COMM WORLD.Get rank ()
Number of processes in a communicator:
nprocs=comm.Get size()

Broadcasting:

comm.Bcast (buffer, root=0)

If a NumPy array is sent, the package can autodiscover the number of items and type, though if not type
double it may be safest to send it explicitly.

Example
Broadcast from root (default rank 0) using default MPI.COMM_WORLD explicitly.
N=np.array([42],dtype=int)

MPI.COMM WORLD.Bcast ([N,MPI.INT])



Reduction

comm.Reduce (sendbuf, recvbuf, op=MPI.SUM, root=0)

Send array sendbuf to root in recvbuf, which applies the specified operation (default MPI.SUM). The
“buffers” are the arrays.

Commonly-used available operations:

MPT.SUM

MPT.PROD

MPT .MAX

MPI.MIN

MPTI .MAXLOC

MPT .MINLOC

Example:

myval=np.array ([myrank])

product=np.zeros (1)

MPI.COMM WORLD.Reduce (myval,product,MPI.PROD)
With Reduce only the root has the value. If all ranks are to know the result use
comm.Allreduce (sendbuf, recvbuf, op=MPI.SUM)
Barrier

comm.Barrier ()

All processes will pause until all members of the specified communicator have invoked the method. This
can be used for explicit synchronization.

Send a message, by default to root with tag 0.

comm. Send (sendbuf, dest=0, tag=0)

Receive a message, by default from root with tag 0 and without creating a Status variable.
comm.Recv (recvbuf, source=0, tag=0, Status=None)

Send/receive

Write on one line:



comm. Sendrecv (sendbuf, dest=0, sendtag=0, recvbuf=None, source=0,
recvtag=0, Status status=None)

Send a message sendbuf to dest while receiving a message from source.

Example

MPI.COMM WORLD.Sendrecv ([halobuf,MPI.FLOAT], myrank+l, O,
[bcbuf,MPI.FLOAT],myrank-1,0,stat)

Gather
Comm.Gather (sendbuf, recvbuf, root=0)

Gather items from each process to the specified process (usually process 0) into a larger buffer
recvbuf in rank order. Gather assumes all sendbufs are the same size.

Example

my N=np.array ([myrank])

all N=np.empty (nprocs)

MPI.COMM WORLD.Gather ([my N,MPI.DOUBLE], [all N,MPI.DOUBLE])

With Gather only the root knows the values. If all processes must know them use
comm.Allgather (sendbuf, recvbuf)

Scatter
comm.Scatter (sendbuf, recvbuf, root=0)

Distribute items from sendbuf to recvbuf in rank order. Scatter assumes the same quantity of
data sent to each process.

Example
Narr=10
if myrank==0:

data=np.arange (nprocs*Narr)
else:

data=np.empty (nprocs*Narr)

my data=np.empty (Narr)
MPI.COMM WORLD.Scatter (data,my data)

Hello, World!

from mpidpy import MPI

import sys
myrank=MPl.COMM_WORLD.Get_rank()



nprocs=MPI.COMM_WORLD.Get_size()
if myrank==0:

sys.stdout.write(“Running on %d processes\n”%nprocs)
sys.stdout.write(“Greetings from process %d\n”%myrank)
MPI.COMM_WORLD.Finalize()



